1、准备材料 开发板(正点原子stm32f407探索者开发板V2.4 )
STM32CubeMX软件(Version 6.10.0 )
野火DAP仿真器
keil µVision5 IDE(MDK-Arm )
ST-LINK/V2驱动
XCOM V2.6串口助手
逻辑分析仪nanoDLA
2、实验目标 使用STM32CubeMX软件配置STM32F407开发板的SPI1与W25Q128芯片通信,以轮询方式读写W25Q128 FLASH芯片,并通过USART1输出相关信息 ,具体为使用开发板上的三个用户按键KEY0/1/2,分别实现对W25Q128芯片写数据/读数据/擦除数据的操作,操作过程中与用户的交互由USART1输出信息来实现
3、实验流程 3.0、前提知识 本实验重点是理解标准SPI通信协议 ,而STM32CubeMX的配置则相对简单,这里不会过于详细全面的介绍SPI通信协议,但是会对所有需要知道的知识做介绍
标准SPI通信协议由时钟信号线SCK、主设备输出从设备输入MOSI和主设备输入从设备输出MISO三根线组成 ,与I2C通信协议不同,挂载在SPI总线上的外围器件不需要有从设备地址,而是由片选CS/SS信号选择从机设备,当片选信号为低电平时,表示该从设备被选中 ,此时主设备通过SCK、MOSI与MISO三根线与该从设备之间进行通信和数据传输,如下所示为SPI总线连接图 (注释1)
本实验所使用的开发板上有一颗FLASH芯片W25Q128,STM32F407通过PB3(SPI1_SCK)、PB4(SPI1_MISO)和PB5(SPI1_MOSI)三个引脚利用标准SPI协议与其进行通信和数据传输,W25Q128的片选信号选择了MCU的PB14引脚,如下图所示为其硬件原理图
SPI通信协议的时序根据CPOL(时钟极性)和CPHA(时钟相位)两个寄存器位的不同一共有四种组合模式
时钟极性CPOL位用来控制SCK引脚在空闲状态时的电平,当该位为0时则表示空闲时刻SCK为低电平,反之为高电平
时钟相位CPHA位用来控制在SCK信号的第几个边沿处采集信号,当该位为0时表示在SCK型号的第一个边沿处采集信号,反之则表示在第二个边沿处采集信号
如下图所示为根据CPOL和CPHA位取不同值时SPI通信协议的四种时序图 (注释2)
使用逻辑分析仪对STM32F407 SPI1通信SCLK、MISO、MOSI和CS四个引脚进行逻辑电平监测,可以发现在执行读取W25Q128芯片ID操作的过程中,其四个引脚的时序与我们所介绍的一致
如下图所示为执行读取W25Q128芯片ID操作所使用的程序、CPOL=0 CPHA=0时SPI通信采集到的时序和CPOL=1 CPHA=1时SPI通信采集到的时序
3.1、CubeMX相关配置 3.1.0、工程基本配置 打开STM32CubeMX软件,单击ACCESS TO MCU SELECTOR选择开发板MCU(选择你使用开发板的主控MCU型号),选中MCU型号后单击页面右上角Start Project开始工程,具体如下图所示
开始工程之后在配置主页面System Core/RCC中配置HSE/LSE晶振,在System Core/SYS中配置Debug模式,具体如下图所示
详细工程建立内容读者可以阅读“STM32CubeMX教程1 工程建立 ”
3.1.1、时钟树配置 系统时钟使用8MHz外部高速时钟HSE,HCLK、PCLK1和PCLK2均设置为STM32F407能达到的最高时钟频率,具体如下图所示
3.1.2、外设参数配置 此实验主要是利用SPI通信协议与W25Q128芯片进行通信和数据传输,并且需要串口将读取的数据输出给用户,同时还需要三个用户按键KEY0/1/2/,因此外设需要初始化KEY0/1/2、USART1和SPI1
按键初始化操作请阅读“STM32CubeMX教程3 GPIO输入 - 按键响应 ”实验
单击Pinout & Configuration页面左边Connectivity/USART1选项,然后按照“STM32CubeMX教程9 USART/UART 异步通信 ”实验中将USART1配置为异步通信模式,无需开启中断,如下图所示
单击Pinout & Configuration页面左边Connectivity/SPI1选项,Mode选择全双工主机模式,不需要硬件片选,时钟分频选择16分频 ,根据W25Q128的数据手册 (注释3) ,读数据指令支持的最高频率为33MHz,因此适当降低频率确保通信不会出现错误,其他参数配置默认即可,具体配置如下图所示
然后在右边芯片引脚预览Pinout view中找到W25Q128芯片的片选引脚PB14,左键单击并配置其功能为GPIO_Ouput ,然后单击System Core/GPIO,配置PB14引脚默认输出电平高,推挽输出,无上下拉,IO速度非常高,具体配置如下图所示
3.1.3、外设中断配置 本实验无需启用中断,如果需要启用SPI1的中断,请单击System Core/NVIC,然后根据需求勾选SP1全局中断,并选择合适的中断优先级即可,具体配置如下图所示
3.2、生成代码 3.2.0、配置Project Manager页面 单击进入Project Manager页面,在左边Project分栏中修改工程名称、工程目录和工具链,然后在Code Generator中勾选“Gnerate peripheral initialization as a pair of ‘c/h’ files per peripheral”,最后单击页面右上角GENERATE CODE生成工程,具体如下图所示
详细Project Manager配置内容读者可以阅读“STM32CubeMX教程1 工程建立 ”实验3.4.3小节
3.2.1、外设初始化调用流程 在生成的工程代码主函数中新增了MX_SPI1_Init()函数,在该函数中实现了对SPI1的模式及参数配置
在MX_SPI1_Init()函数中调用了HAL_SPI_Init()函数使用配置的参数对SPI1进行了初始化
在HAL_SPI_Init()函数中又调用了HAL_SPI_MspInit()函数对SPI1引脚复用设置,SPI1时钟使能,如果开启了中断该函数中还会有中断相关设置及使能
具体的SPI1初始化函数调用流程如下图所示
3.2.2、外设中断调用流程 本实验无需中断,因此未启动任何SPI1的中断
3.2.3、添加其他必要代码 需要添加W25Q128的驱动文件,注意本实验只使用而不会介绍W25Q128具体驱动文件的原理,具体源代码如下图所示 (注释4)
w25flash.c文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 #include "w25flash.h" #define MAX_TIMEOUT 200 HAL_StatusTypeDef SPI_TransmitOneByte (uint8_t byteData) { return HAL_SPI_Transmit(&SPI_HANDLE, &byteData, 1 , MAX_TIMEOUT); } HAL_StatusTypeDef SPI_TransmitBytes (uint8_t * pBuffer, uint16_t byteCount) { return HAL_SPI_Transmit(&SPI_HANDLE, pBuffer, byteCount, MAX_TIMEOUT); } uint8_t SPI_ReceiveOneByte () { uint8_t byteData=0 ; HAL_SPI_Receive(&SPI_HANDLE, &byteData, 1 , MAX_TIMEOUT); return byteData; } HAL_StatusTypeDef SPI_ReceiveBytes (uint8_t * pBuffer, uint16_t byteCount) { return HAL_SPI_Receive(&SPI_HANDLE, pBuffer, byteCount, MAX_TIMEOUT); } uint8_t Flash_ReadSR1 (void ) { uint8_t byte=0 ; __Select_Flash(); SPI_TransmitOneByte(0x05 ); byte=SPI_ReceiveOneByte(); __Deselect_Flash(); return byte; } uint8_t Flash_ReadSR2 (void ) { uint8_t byte=0 ; __Select_Flash(); SPI_TransmitOneByte(0x35 ); byte=SPI_ReceiveOneByte(); __Deselect_Flash(); return byte; } void Flash_WriteSR1 (uint8_t SR1) { Flash_Write_Enable(); __Select_Flash(); SPI_TransmitOneByte(0x01 ); SPI_TransmitOneByte(0x00 ); __Deselect_Flash(); Flash_Wait_Busy(); } HAL_StatusTypeDef Flash_WriteVolatile_Enable (void ) { __Select_Flash(); HAL_StatusTypeDef result=SPI_TransmitOneByte(0x50 ); __Deselect_Flash(); return result; } HAL_StatusTypeDef Flash_Write_Enable (void ) { __Select_Flash(); HAL_StatusTypeDef result=SPI_TransmitOneByte(0x06 ); __Deselect_Flash(); Flash_Wait_Busy(); return result; } HAL_StatusTypeDef Flash_Write_Disable (void ) { __Select_Flash(); HAL_StatusTypeDef result=SPI_TransmitOneByte(0x04 ); __Deselect_Flash(); Flash_Wait_Busy(); return result; } uint32_t Flash_Addr_byBlock (uint8_t BlockNo) { uint32_t addr=BlockNo; addr=addr<<16 ; return addr; } uint32_t Flash_Addr_bySector (uint16_t SectorNo) { if (SectorNo>4095 ) SectorNo=0 ; uint32_t addr=SectorNo; addr=addr<<12 ; return addr; } uint32_t Flash_Addr_byPage (uint16_t PageNo) { uint32_t addr=PageNo; addr=addr<<8 ; return addr; } uint32_t Flash_Addr_byBlockSector (uint8_t BlockNo, uint8_t SubSectorNo) { if (SubSectorNo>15 ) SubSectorNo=0 ; uint32_t addr=BlockNo; addr=addr<<16 ; uint32_t offset=SubSectorNo; offset=offset<<12 ; addr += offset; return addr; } uint32_t Flash_Addr_byBlockSectorPage (uint8_t BlockNo, uint8_t SubSectorNo, uint8_t SubPageNo) { if (SubSectorNo>15 ) SubSectorNo=0 ; if (SubPageNo>15 ) SubPageNo=0 ; uint32_t addr=BlockNo; addr=addr<<16 ; uint32_t offset=SubSectorNo; offset=offset<<12 ; addr += offset; offset=SubPageNo; offset=offset<<8 ; addr += offset; return addr; } void Flash_SpliteAddr (uint32_t globalAddr, uint8_t * addrHigh, uint8_t * addrMid,uint8_t * addrLow) { *addrHigh= (globalAddr>>16 ); globalAddr =globalAddr & 0x0000FFFF ; *addrMid= (globalAddr>>8 ); *addrLow =globalAddr & 0x000000FF ; } uint16_t Flash_ReadID (void ) { uint16_t Temp = 0 ; __Select_Flash(); SPI_TransmitOneByte(0x90 ); SPI_TransmitOneByte(0x00 ); SPI_TransmitOneByte(0x00 ); SPI_TransmitOneByte(0x00 ); Temp =SPI_ReceiveOneByte()<<8 ; Temp|=SPI_ReceiveOneByte(); __Deselect_Flash(); return Temp; } uint64_t Flash_ReadSerialNum (uint32_t * High32, uint32_t * Low32) { uint8_t Temp = 0 ; uint64_t SerialNum=0 ; uint32_t High=0 ,Low=0 ; __Select_Flash(); SPI_TransmitOneByte(0x4B ); SPI_TransmitOneByte(0x00 ); SPI_TransmitOneByte(0x00 ); SPI_TransmitOneByte(0x00 ); SPI_TransmitOneByte(0x00 ); for (uint8_t i=0 ; i<4 ; i++) { Temp =SPI_ReceiveOneByte(); High = (High<<8 ); High = High | Temp; } for (uint8_t i=0 ; i<4 ; i++) { Temp =SPI_ReceiveOneByte(); Low = (Low<<8 ); Low = Low | Temp; } __Deselect_Flash(); *High32 = High; *Low32=Low; SerialNum = High; SerialNum = SerialNum<<32 ; SerialNum=SerialNum | Low; return SerialNum; } uint8_t Flash_ReadOneByte (uint32_t globalAddr) { uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); __Select_Flash(); SPI_TransmitOneByte(0x03 ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); byte2 = SPI_ReceiveOneByte(); __Deselect_Flash(); return byte2; } void Flash_ReadBytes (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) { uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); __Select_Flash(); SPI_TransmitOneByte(0x03 ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); SPI_ReceiveBytes(pBuffer, byteCount); __Deselect_Flash(); } void Flash_FastReadBytes (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) { uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); __Select_Flash(); SPI_TransmitOneByte(0x0B ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); SPI_TransmitOneByte(0x00 ); SPI_ReceiveBytes(pBuffer, byteCount); __Deselect_Flash(); } void Flash_EraseChip (void ) { Flash_Write_Enable(); Flash_Wait_Busy(); __Select_Flash(); SPI_TransmitOneByte(0xC7 ); __Deselect_Flash(); Flash_Wait_Busy(); } void Flash_WriteInPage (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) { uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); Flash_Write_Enable(); Flash_Wait_Busy(); __Select_Flash(); SPI_TransmitOneByte(0x02 ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); SPI_TransmitBytes(pBuffer, byteCount); __Deselect_Flash(); Flash_Wait_Busy(); } void Flash_WriteSector (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) { uint8_t secCount= (byteCount / FLASH_SECTOR_SIZE); if ((byteCount % FLASH_SECTOR_SIZE) >0 ) secCount++; uint32_t startAddr=globalAddr; for (uint8_t k=0 ; k<secCount; k++) { Flash_EraseSector(startAddr); startAddr += FLASH_SECTOR_SIZE; } uint16_t leftBytes=byteCount % FLASH_PAGE_SIZE; uint16_t pgCount=byteCount/FLASH_PAGE_SIZE; uint8_t * buff=pBuffer; for (uint16_t i=0 ; i<pgCount; i++) { Flash_WriteInPage(globalAddr, buff, FLASH_PAGE_SIZE); globalAddr += FLASH_PAGE_SIZE; buff += FLASH_PAGE_SIZE; } if (leftBytes>0 ) Flash_WriteInPage(globalAddr, buff, leftBytes); } void Flash_EraseBlock64K (uint32_t globalAddr) { Flash_Write_Enable(); Flash_Wait_Busy(); uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); __Select_Flash(); SPI_TransmitOneByte(0xD8 ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); __Deselect_Flash(); Flash_Wait_Busy(); } void Flash_EraseSector (uint32_t globalAddr) { Flash_Write_Enable(); Flash_Wait_Busy(); uint8_t byte2, byte3, byte4; Flash_SpliteAddr(globalAddr, &byte2, &byte3, &byte4); __Select_Flash(); SPI_TransmitOneByte(0x20 ); SPI_TransmitOneByte(byte2); SPI_TransmitOneByte(byte3); SPI_TransmitOneByte(byte4); __Deselect_Flash(); Flash_Wait_Busy(); } uint32_t Flash_Wait_Busy (void ) { uint8_t SR1=0 ; uint32_t delay=0 ; SR1=Flash_ReadSR1(); while ((SR1 & 0x01 )==0x01 ) { HAL_Delay(1 ); delay++; SR1=Flash_ReadSR1(); } return delay; } void Flash_PowerDown (void ) { __Select_Flash(); SPI_TransmitOneByte(0xB9 ); __Deselect_Flash(); HAL_Delay(1 ); } void Flash_WakeUp (void ) { __Select_Flash(); SPI_TransmitOneByte(0xAB ); __Deselect_Flash(); HAL_Delay(1 ); }
w25flash.h文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 #ifndef _W25FLASH_H #define _W25FLASH_H #include "stm32f4xx_hal.h" #include "spi.h" #define CS_PORT GPIOB #define CS_PIN GPIO_PIN_14 #define SPI_HANDLE hspi1 #define __Select_Flash() HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_RESET) #define __Deselect_Flash() HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_SET) #define FLASH_PAGE_SIZE 256 #define FLASH_SECTOR_SIZE 4096 #define FLASH_SECTOR_COUNT 4096 HAL_StatusTypeDef SPI_TransmitOneByte (uint8_t byteData) ; HAL_StatusTypeDef SPI_TransmitBytes (uint8_t * pBuffer, uint16_t byteCount) ; uint8_t SPI_ReceiveOneByte (void ) ; HAL_StatusTypeDef SPI_ReceiveBytes (uint8_t * pBuffer, uint16_t byteCount) ; uint16_t Flash_ReadID (void ) ; uint64_t Flash_ReadSerialNum (uint32_t * High32, uint32_t * Low32) ; HAL_StatusTypeDef Flash_WriteVolatile_Enable (void ) ; HAL_StatusTypeDef Flash_Write_Enable (void ) ; HAL_StatusTypeDef Flash_Write_Disable (void ) ; uint8_t Flash_ReadSR1 (void ) ; uint8_t Flash_ReadSR2 (void ) ; void Flash_WriteSR1 (uint8_t SR1) ; uint32_t Flash_Wait_Busy (void ) ; void Flash_PowerDown (void ) ; void Flash_WakeUp (void ) ; uint32_t Flash_Addr_byBlock (uint8_t BlockNo) ;uint32_t Flash_Addr_bySector (uint16_t SectorNo) ;uint32_t Flash_Addr_byPage (uint16_t PageNo) ; uint32_t Flash_Addr_byBlockSector (uint8_t BlockNo, uint8_t SubSectorNo) ;uint32_t Flash_Addr_byBlockSectorPage (uint8_t BlockNo, uint8_t SubSectorNo, uint8_t SubPageNo) ;void Flash_SpliteAddr (uint32_t globalAddr, uint8_t * addrHigh, uint8_t * addrMid,uint8_t * addrLow) ; void Flash_EraseChip (void ) ; void Flash_EraseBlock64K (uint32_t globalAddr) ; void Flash_EraseSector (uint32_t globalAddr) ; uint8_t Flash_ReadOneByte (uint32_t globalAddr) ; void Flash_ReadBytes (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) ; void Flash_FastReadBytes (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) ; void Flash_WriteInPage (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) ; void Flash_WriteSector (uint32_t globalAddr, uint8_t * pBuffer, uint16_t byteCount) ; #endif
向工程中添加.c/.h文件的步骤请阅读“STM32CubeMX教程19 I2C - MPU6050驱动 ”实验3.2.3小节
在主函数中添加操作提示信息和按键操作逻辑程序,具体如下图所示
源代码如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 uint16_t ID = Flash_ReadID();printf ("W25Q128 ID:0x%x\r\n" ,ID);printf ("---------------------\r\n" );printf ("KEY2: Flash_Write\r\n" );printf ("KEY1: Flash_Read\r\n" );printf ("KEY0: Flash_Erase\r\n" );printf ("---------------------\r\n" ); if (HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin) == GPIO_PIN_RESET) { HAL_Delay(50 ); if (HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin) == GPIO_PIN_RESET) { Flash_TestWrite(); while (!HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)); } }if (HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == GPIO_PIN_RESET) { HAL_Delay(50 ); if (HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin) == GPIO_PIN_RESET) { Flash_TestRead(); while (!HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)); } }if (HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin) == GPIO_PIN_RESET) { HAL_Delay(50 ); if (HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin) == GPIO_PIN_RESET) { printf ("---------------------\r\n" ); printf ("Erasing Block 0(256 pages)...\r\n" ); uint32_t globalAddr=0 ; Flash_EraseBlock64K(globalAddr); printf ("Block 0 is erased.\r\n" ); printf ("---------------------\r\n" ); while (!HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)); } }
在spi.c中实现W25Q128的写入/读取测试函数Flash_TestWrite()/Flash_TestRead(),具体源代码如下所示 (注释4)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 #include "w25flash.h" #include "string.h" #include "stdio.h" void Flash_TestWrite (void ) { uint8_t blobkNo = 0 ; uint16_t sectorNo = 0 ; uint16_t pageNo = 0 ; uint32_t memAddress = 0 ; printf ("---------------------\r\n" ); memAddress = Flash_Addr_byBlockSectorPage(blobkNo, sectorNo, pageNo); uint8_t bufStr1[] = "Hello from beginning" ; uint16_t len = 1 + strlen ("Hello from beginning" ); Flash_WriteInPage(memAddress, bufStr1, len); printf ("Write in Page0:0\r\n%s\r\n" , bufStr1); uint8_t bufStr2[]="Hello in page" ; len = 1 + strlen ("Hello in page" ); Flash_WriteInPage(memAddress+100 , bufStr2, len); printf ("Write in Page0:100\r\n%s\r\n" , bufStr2); uint8_t bufPage[FLASH_PAGE_SIZE]; for (uint16_t i=0 ;i<FLASH_PAGE_SIZE;i++) bufPage[i] = i; pageNo = 1 ; memAddress = Flash_Addr_byBlockSectorPage(blobkNo, sectorNo, pageNo); Flash_WriteInPage(memAddress, bufPage, FLASH_PAGE_SIZE); printf ("Write 0-255 in Page1\r\n" ); printf ("---------------------\r\n" ); } void Flash_TestRead (void ) { uint8_t blobkNo=0 ; uint16_t sectorNo=0 ; uint16_t pageNo=0 ; printf ("---------------------\r\n" ); uint8_t bufStr[50 ]; uint32_t memAddress = Flash_Addr_byBlockSectorPage(blobkNo, sectorNo,pageNo); Flash_ReadBytes(memAddress, bufStr, 50 ); printf ("Read from Page0:0\r\n%s\r\n" ,bufStr); Flash_ReadBytes(memAddress+100 , bufStr, 50 ); printf ("Read from Page0:100\r\n%s\r\n" ,bufStr); uint8_t randData = 0 ; pageNo = 1 ; memAddress = Flash_Addr_byBlockSectorPage(blobkNo, sectorNo,pageNo); randData = Flash_ReadOneByte(memAddress+12 ); printf ("Page1[12] = %d\r\n" ,randData); randData = Flash_ReadOneByte(memAddress+136 ); printf ("Page1[136] = %d\r\n" ,randData); randData = Flash_ReadOneByte(memAddress+210 ); printf ("Page1[210] = %d\r\n" ,randData); printf ("---------------------\r\n" ); } void Flash_TestWrite (void ) ;void Flash_TestRead (void ) ;
4、常用函数 1 2 3 4 5 HAL_StatusTypeDef HAL_SPI_Transmit (SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) HAL_StatusTypeDef HAL_SPI_Receive (SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
5、烧录验证 烧录程序,开发板上电后首先读取FLASH芯片的ID,并通过串口显示给用户,然后输出操作提示,按下KEY0按键会擦除块0内容,擦除后按下KEY1按键读取内容会发现全是FF,然后按下KEY2按键将数据写入,此时再按下KEY1按键读取内容会发现和我们写入的内容一致,如下图所示为整个过程串口详细输出信息
6、注释详解 注释1 :图片来源多路SPI从设备连接方法–技术天地
注释2 :图片来源STM32Cube高效开发教程(基础篇)
注释3 :W25Q128FV Datasheet
注释4 :驱动代码来源STM32Cube高效开发教程(基础篇)
参考资料 STM32Cube高效开发教程(基础篇)